Intent based networking
And how Machine Learning Can Bring Convergence
Simplifies the North bound interface

- Hiding complexity from the network application programmer or user
 - Tell me just what you need
 - And I'll find out what you need to do to have it
- For the academics
 - A LaTeX for networking: WYWIWYG

More than just yet another trendy topic in the SDN/NFV world.
- **ONF**
 - Principles of operation
 - Information models

- **OSSDN**
 - BOULDER
 - Objective: "provide authoritative interface components for building dissimilar controller system implementations"
 - For that, they define:
 - tools,
 - documents
 - information model and data model translation tools

- **OpenDaylight:**
 - Network Intent Composition
 - IBNEMO
 - NETIDE

State of the Art
5GPPP projects are using ODL, ONOS, etc.

However, each of these controller platforms have different approaches to intent.

Convergence is key:
 - Exploit synergies between projects
 - Foster a common approach
 - To implementation
 - To dissemination
 - To standardisation
- COGNET is building a **network management** solution based on machine-learning
 - Relying on SDN and the NFV architecture framework
- The current stress is on
 - Acquiring knowledge
 - PoC of machine learning techniques
- Closing the loop:
 - Translate actions into an intent
 - Feed intent into the loop
- A common understanding/agreement between 5GPPP projects on an intent based interface would allow all projects to benefit from COGNET findings

An example:
Coupling machine learning with intent
Essentially defining a Machine Learning Cluster (MLC) and two data flows

- **Input**: measurement and monitoring
- **Output**: policies

- **Why not intent here?**
 - Would allow us to provide a uniform interface for different underlying controller frameworks
Questions, reactions?

- Pedro A. Aranda
 - pedroa.aranda@telefonica.com