"On the integration of terrestrial and satellite systems in future 5G networks: a waveform perspective"

A. Guidotti (Univ. of Bologna), G. Colavolpe (Univ. of Parma), A. Vanelli-Coralli (Univ. of Bologna), and G. E. Corazza (Univ. of Bologna)

> Joint Expert Group and Vision Group Workshop 2016 Bologna, March 16, 2016

Presentation

- University of Parma and University of Bologna
 - Satellite and Terrestrial Communications
 - Waveform design
 - Interference Management
 - Synchronization and Estimation
 - Impairment countermeasures
 - Signal processing
 - Cognitive Radio
- Coordinator and Responsible for
 - European Space Agency studies
 - European projects
 - 🥏 ..

Context

- In 5G, very different use cases are converging, which pose mixed requirements
 eMBB, mMTC, uRLL
- New Air Interfaces and waveforms are required to address
 - Frequency assignments from 300 MHz up to 100 GHz
 - Single- and multi-carrier solutions
 - Licensed/shared/unlicensed spectrum access
 - Orthogonal vs. non-orthogonal access
 - 🥏 ...
- 5GPPP, ETSI-SCN, and ITU (WG4B-4/40-E) groups advise for the integration of a satellite component into the 5G Architecture
 - e.g., coverage extension, backhauling/fronthauling, C-plane handover, etc.

SatCom in 5G

- Thanks to their inherent characteristics, satellites can contribute to enhance 5G service capabilities and to address major challenges
 - Ubiquitous coverage for areas/applications where terrestrial delivery not possible/efficient
 - Rural areas, emerging countries, etc.
 - 5G network management, synchronization, signalling,...
 - Efficient hierarchical backhauling
 - Multimedia delivery
 - M2M communications
 - Mission critical scenarios

SatCom: current systems and future trends

SatCom scenarios

- GEO constellations HTS
 - Currently operating at 100 Gbit/s
 - 100 beams in Ka-band
 - Future GEO-HTS systems
 - Use of exclusive & shared Ka-bands, flexible power distribution, dynamic beamforming, beam hopping, etc.
- Non-GEO constellations
 - Existing LEO constellations target lower capacity global services
 - Mega-constellations are being developed (services foreseen by 2020)
 - Global market with high capacity, low latency services
 - Interference issues with GEO
 - OneWeb (640), LeoSat (80-100), SpacEx (4000), Samsung (4600), SSI (80), etc.

Source: B. Evans, "Future Network Concepts & Challenges", SPECSI workshop, London, March 2, 2016

Satellite channel characteristics

- There are several impairments on a satellite channel to be dealt with
 - Phase Noise

Non-linearities (not-colocated with the transmitter)

On-board filtering

SatCom Waveforms: SoA

		-
 DVB-S2(X) Single-carrier waveform 	Standard DVB-52 carrier spacing Carriers from another operator Carriers from another operator Operator Rented capacity Transponder	Sources - "White Paper on the use of DVB-S2X for DTH applications, DSNG & Professional Services, Broadband Interactive Services and VL-SNR applications"
	Carrier spacing with Filtering Technology Carriers from another operator Rented capacity Transponder	- Newtec white paper "DVB-S2X demystified"
Regular framing structure	Regular Frame Regula Key:	r Frame Regular Frame
	Standard PLS Header	Mobile frame Sync

Multiple MODCODs from very low SNR to high spectral efficiency

On the integration of terrestrial and satellite systems in future 5G networks: a waveform perspective

5G discussed waveforms

Single- and multi-carrier waveforms

- Multi-carrier: optimal equalization efficiently performed in the frequency domain
- Single-carrier: development of high-performance and low-complexity equalizers

Orthogonal and non-orthogonal approaches

- Orthogonality ensures the absence of interference
 - OFDM-like waveforms

- ...

- Limited spectral efficiency: CP, OOB
- Non-orthogonality to improve efficiency
 - interference shall be then dealt with
 - Faster-than-Nyquist/Time-Frequency Packing
 - Non orthogonal multicarrier
- Several waveforms proposed and to be considered for SatCom
 - e.g., P-OFDM, F-OFDM, UF-OFDM, FBMC, etc.

Question to be addressed

- Satellite positioning in the 5G architecture for
 - integrated satellite terrestrial network management and control approaches
 - Hierarchical backhauling
- Compatibility studies on radio interface (waveform, framing structure, etc.) and developed impairments countermeasure
 - How do the proposed air interface(s) performs in the presence of typical satellite channel impairments?
 - How do proposed countermeasures devised for terrestrial channel impairment fit satellite architectures?
 - Which are the complexity/flexibility/efficiency/costs trade offs?
 - A single air interface/multi RAT including satellite
- Channel models and interference management models
- Feasibility and demonstrations of efficient integration of Satellite and Terrestrial networks

THANK YOU

A. Guidotti (Univ. of Bologna), G. Colavolpe (Univ. of Parma), A. Vanelli-Coralli (Univ. of Bologna), and G. E. Corazza (Univ. of Bologna)

alessandro.vanelli@unibo.it